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                                                                         Abstract                                       

First, we restate a proof of a highly localized special case of a metric tensor uncertainty 
principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which 
we do, and it so happens that the dominant metric tensor we will be examining, is variation 

in ttgδ . The metric tensor variations given by rrgδ , gθθδ  and gφφδ are 

negligible, as compared to the variationttgδ . Afterwards, what is referred to by Barbour as 

emergent duration of time tδ  is from the Heisenberg Uncertainty principle(HUP) applied to 

ttgδ in such a way as to give, in the Planckian space-time regime a nonzero minimum non 

zero lower ground to a massive graviton, gravitonm . The lower bound to the massive 

graviton, is influenced by ttgδ and kinetic energy which is in the Planckian emergent 

duration of time tδ  as( )E V− .  

Key words: Massive Gravitons, Heisenberg Uncertainty Principle (HUP), Riemannian-
Penrose Inequality 

 

i. Introduction 

     The first matter of business will be to introduce a framework of the speed of gravitons in 
“heavy gravity”. Heavy Gravity is the situation where a graviton has a small rest mass and is 
not a zero-mass particle, and this existence of “heavy gravity” is important since eventually, 
as illustrated by Will [1,2] gravitons having a small mass could possibly be observed via their 
macroscopic effects upon astrophysical events. Secondly, our manuscript’s inquiry also will 
involve an upper bound to the rest mass of a graviton. The second aspect of the inquiry of our 
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manuscript will be to come up with a variant of the Heisenberg Uncertainty principle (HUP), 
involving a metric tensor, as well as the Stress energy tensor, which will in time allow us to 
establish a lower bound to the mass of a graviton, preferably at the start of cosmological 
evolution.  

 We reference what was done by Will in his living reviews of relativity article as to the 
‘Confrontation between GR and experiment”. Specifically, we make use of his experimentally 
based formula of [1, 2], with gravitonv the speed of a graviton, and gravitonm the rest mass of a 

graviton, and gravitonE in the inertial rest frame given as: 

2 2 4

2
1graviton graviton

graviton

v m c

c E

  = − 
 

                                          (1) 

Furthermore, using [2], if the rest mass of a graviton is very small, we can make a clear 
statement of 
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Here, at∆ is the difference in arrival time, and   et∆ is the difference in emission time/in the 

case of the early Universe, i.e. near the big bang, then if in the beginning of time, one has, if 

we assume that there is an average graviton gravitonE ω≈ ⋅h ,  and  
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 and if 26~ 4.6 10 ( )D meters radii universe× = , so one can set 

 2200
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D
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                       (4) 

And if one sets the mass of a graviton [3] into Eq. (1), then we have in the present era, that if 
we look at primordial time generated gravitons, that if one uses the  
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Note that the above frequency, for the graviton is for the present era, but that it starts 
assuming genesis from an initial inflationary starting point which is not a space – time 
singularity. 

Note this comes from a scale factor, if  
55 55~ 10 ~ 10scale factorz a −

−⇔ , i.e. 55 orders of 

magnitude smaller than what would normally consider, but here note that the scale factor is 
not zero, so we do not have a space – time singularity.  

We will next discuss the implications of this point in the next section, of a non-zero smallest 
scale factor. Secondly the fact we are working with a massive graviton, as given will be given 
some credence as to when we obtain a lower bound, as will come up in our derivation of 

modification of the values[3]  
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2. Nonzero scale factor, initially and what this is telling us physically. Starting with a 
configuration from Unruh. 

Begin with the starting point of [4, 5]   

2
l p∆ ⋅∆ ≥ h

       (7) 

We will be using the approximation given by Unruh [4, 5],  

( )
2

( )

ij
ij

ij

ij ij
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p T t A

δ

δ

∆ = ⋅

∆ = ∆ ⋅ ⋅ ∆
     (8) 

If we use the following, from the Roberson-Walker metric [6]. 
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Following Unruh [4, 5], write then, an uncertainty of metric tensor as, with the following 
inputs.  

2 110 35( ) ~10 , ~10Pa t r l meters− −≡    (10) 

Then, the surviving version of Eq. (7) and Eq. (8) is, then, if ~ttT ρ∆ ∆  

(4)

(4)
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δ
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h
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       (11) 

This Eq. (11) is such that we can extract, up to a point the HUP principle for uncertainty in 
time and energy, with one very large caveat added, namely if we use the fluid approximation 
of space-time[6] for the stress energy tensor as given in Eq. (12) below. 

( , , , )iiT diag p p pρ= − − −                    (12) 

Then 

 ( )3
~ ~tt

E
T

V
ρ ∆∆ ∆         (13) 

Then, Eq. (11) and Eq. (12) and Eq. (13) together yield 
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        (14) 

How likely is ~ (1)ttg Oδ ? Not going to happen. Why? The homogeneity of the early universe 

will keep   
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1tt ttg gδ ≠ =       (15) 

In fact, we have that from Giovannini [6], that if φ is a scalar function, and2 110( ) ~ 10a t − , then 
if  

2~ ( ) 1ttg a tδ φ⋅ <<       (16) 

Then, there is no way that Eq. (14) is going to come close to
2

t Eδ ∆ ≥ h
.  Hence, the 

Mukhanov suggestion as will be discussed toward the end of this article, is not feasible.  
Finally, we will discuss a lower bound to the mass of the graviton.  

3. How we can justify writing very small ~ ~ ~ 0rrg g gθθ φφδ δ δ +
 values? 

  

To begin this process, we will break it down into the following coordinates. 

In the rr,θθ  andφφ  coordinates, we will use the Fluid approximation, 

( , , , )iiT diag p p pρ= − − − [7] with 
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                  (17) 

If as an example, we have negative pressure, withrrT ,Tθθ  and Tφφ  < 0, andp ρ= − , then 

the 

 only choice we have, then is to set ~ ~ ~ 0rrg g gθθ φφδ δ δ +
, since there is no way that  

p ρ= − is zero valued. 

Having said this, the value of ttgδ  being nonzero, will be part of how we will be looking at 

a lower bound to the graviton mass which is not zero. 
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4. Lower bound to the graviton mass using Barbour’s emergent time  

To start this approximation, we will be using Barbour’s value of emergent time [8, 9] 
restricted to the Plank spatial interval and massive gravitons, with a massive graviton [10]  

( ) ( ) ( )
2

2 2

i i i
graviton P Pi

emergent

m l l
m l l

t
E V E V

δ
⋅ ⋅

= →
⋅ − ⋅ −

∑
    (18) 

Initially, as postulated by Babour [8, 9], this set of masses, given in the emergent time 
structure could be for say the planetary masses of each contribution of the solar system. Our 
identification is to have an initial mass value, at the start of creation, for an individual 
graviton.  

If ( )2 2

emergent
t tδ δ= in Eq. (11), using Eq. (11) and Eq. (18) we can arrive at the identification 

of  

( )
2

2 22

2 ( )
graviton

tttt P

E V
m

Tg lδ
−≥ ⋅

∆
h

             (19) 

Key to Eq. (19) will be identification of the kinetic energy which is written asE V− . This 
identification will be the key point raised in this manuscript. Note that [11 raises the distinct 
possibility of an initial state, just before the ‘big bang’ of a kinetic energy dominated ‘pre 
inflationary’ universe. i.e., in terms of an inflation 2 ( . ~ )P E Vφ >>& [7]. The key finding which 
is in [11] is, that, if the kinetic energy is dominated by ‘inflation’ that,    

2 6. . ~ ( )~K E E V aφ −− ∝&     (20) 

This is done with the proviso that w <-1, in effect, what we are saying is that during the 
period of the ‘Planckian regime’ we can seriously consider an initial density proportional to 
Kinetic energy, and call this K.E. as proportional to [7] 

( )3 1 w
w aρ − −∝       (21) 

If we are where we are in a very small Planckian regime of space-time, we could, then say 
write Eq. 

(21) as proportional to 4g T∗ [7], with g∗ initial degrees of freedom, and T the initial 
temperature as  

just before the onset of inflation. The question to ask, what is the value of the initial degrees? 

of freedom, and what is the temperature, T, at the start of expansion? For what it is worth, the  
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supposition, is that there would then be a likelihood for an initial low temperature regime  

5. Multiverse and answering the Mukhanov hypothesis. Influence of the Einstein spaces 

Here, the initial 55
0 ~ ~10initiala a − , or so and so the density in Eq. (21) at Planck time would, 

be proportional to the Planck Frequency [7] 

5
43 1 43

P
P

1
1.85487  1 ~ 1.80   10  5

c
s Hz

t G
ω −= = = × ×

h
    (22) 

This is at the instant of Planck time. We can then ask what an initial time contribution before 
the onset of Planck time would be. Does Eq. (22) represent the initial value of graviton 
frequency?  

This value of the frequency of a graviton, which would be red shifted enormously would be in 
tandem with an initial time step of as given by [12] 

 
2
01

~
6 6

initial

initial

a
t

πρ π
≈                    (23) 

This value for the initial time step would be probably lead to Pre Planckian time , i.e. smaller 
than 10^ -43 seconds, which then leads us to consider, what would happen if a multi verse 
contributed to initial space-time conditions as seen in Eq. (11) above. If the cosmic fluid 
approximation as given by Eq. (12) were legitimate, and one could also look at Eq. (13),  
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    (24) 

Then if one is looking at a multiverse, we first will start at the Penrose hypothesis for a cyclic 
conformal universe, starting with [13] 
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 However, in the multiverse contribution to Eq. (12) above, we would have, that  

1 1

1

1
( )uv uv

N

j j
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N
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 Ω − → Ω ∑        (26) 

So, does something like this hold?  In a general sense? 



 

 

 

E-Leader Prague 2023 

 

( )2

1

1

2

ˆ

1
( )

~ 1 /

uv

uv

uv uv
uv

initial

N
uv

j j

Planck

g g g

inversion g
N

M

δ

β ε

−

=

+

= Ω

 → Ω 

  + 

∑        (27) 

If the fluid approximation as given in Eq. (12) and Eq. (13) hold, then Eq. (27) conceivably 
could be identifiable as linkable to. 
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If we could write, say 
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  (29) 

Then, if each j is the jth contribution of N “multiverse” contributions to a new single universe 
being nucleated, one could say that there was, indeed, likely an “averaging” and that the 
causal barrier which Mukhanov spoke of, as to eachtδ , and actually to each graviton entering 
into the present universe, one could mathematically average out the results of a sum up of 
each of the contributions from each prior to a present universe, according to 

( ) ( )11
1

tt tt jtt tt j jj

N

gg N
δδ

−−

⋅ ≡
   ⋅ Ω ⋅ Ω ⋅    
 

∑∑

h h      (30) 

If Eq. (30) held, then we could then write 
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Instead, we have Eq. (28), and it is safe to say that for each collapsing universe which might 
contribute to a re cycled universe that the following inequality is significant. 

( )1 11 1
tt tt tt ttj j

j j

g g
N N

δ δ− −   ⋅ Ω ⋅ ≠ ⋅ Ω ⋅   ∑ ∑        (32) 

Hence, the absence of an averaging procedure, due to a multiverse, would then rule against a 
causal barrier, as was maintained by Mukhanov, in his discussion with the author, in Marcel 
Grossman 14, in Italy. Then the possible approximation say of  

  ( )
2

2
2 2 2 01

~ ~ ~
6 6

   tt graviton Planck initial

initial

a
T M tω β

πρ π

−
 

∝ ≈ 
 
 

   (33) 

Would not hold, and that may lead to a breakdown of the Causal barrier hypothesis of 
Mukhanov, which the author emphatically disagreed with. 

6. Conclusion. Considering Eq. (6) and Eq. (11) in lieu of Einstein space, and further 
research questions 

A way of solidifying the approach given here, in terms of early universe GR theory is to refer 
to Einstein spaces, via [14] as well as to make certain of the Stress energy tensor [15] as we 
can write it as a modified Einstein field equation. With, then ℵ  as a constant.  

        ij ijR g= ℵ                                                                                                                                     
  (34) 

Here, the term in the left-hand side of the metric tensor is a constant, so then if we write, with 
R also a constant [15]  

[ ]2 1

8ij ij
ij

S
T R g

gg

δ
δ π

= − = − ⋅ ℵ− + Λ ⋅
−                                                                                              

 (35) 

The terms, if we use the fluid approximation given by Eq. (12) as well as the metric given in 
Eq. (9) will then tend to a constant energy term on the RHS of Eq. (35) as well as restricting i, 
and j, to t and t 

So as to recover, via the Einstein spaces, the seemingly heuristic argument given above. 
Furthermore when we refer to the Kinetic energy space as an inflation where we assume that 

the potential energy is proportional to V, so as to allow us to write  2 ( . ~ )P E Vφ >>& [7], we 

can also then utilize the following operator equation for the generation of an ‘inflation field’ 
given by the following set of equations 
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K
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φ φ
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=
∂=

∂
∂− =
∂

       (36) 

In the case of the general elliptic operator K  if we are using the Fulling reference, [16] in the 
case of the above Roberson-Walker metric, with the results that the elliptic operator, in this 
case become,  

 
( )

2 2

2

,

2
2

, , 2

( )

det
( )

det

( )

ij
i j

i j

i j t t

K m R

g g
m R

g

m R
t

ξ

ξ

ξ→

= −∇ + +

∂ ∂
= − + +

∂→− + +
∂

∑         (37) 

Then, according to [16], if R above, in Eq. (37) is initially a constant, we will see then, if m is 
the inflation mass,  

  

( )

( )

2
2

2

2 2

cos( )

cos( ( ))

t t K f

t

t t m R

φ

ω

φ ω ξ

=

∂− →
∂

⇔ = + +

      (38) 

Then 1c  as an unspecified, for now constant will lead to a first approximation of a Kinetic 

energy dominated initial configuration, with details to be gleaned from [16,17,18] to give 
more details to the following equation, R here is linked to curvature of space-time, and m is 

an inflation mass, connected with the field  ( ) cos( )t t K fφ = with the result,   

( )2 2 2
1( ) ( )t m R c Vφ ω ξ φ ≈ + + ⋅ >> 

&        (39) 

If the frequency, of say, Gravitons is of the order of Planck frequency as in Eq. (22), then this 
term, would likely dominate Eq. (39). More of the details of this will be worked out, and also 
candidates for the ( )V φ will be ascertained, most likely, we will be looking the Rindler 

Vacuum as specified in [19] as well as also details of what is relevant to maintain local 
covariance in the initial space-time fields as given in [20] 

Why is a refinement of Eq. (39) necessary? 
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The details of the elliptic operator K will be gleaned from [16, 17, 18] whereas the details of 

inflation 2 ( . ~ )P E Vφ >>& [7] are important to get a refinement on the lower mass of the 

graviton as given by the left-hand side of Eq. (24). We hope to do this in the coming year. The 
mass, m, in Eq. (37) for inflation, not Graviton, to have links to the beginning of the 
expansion of the universe. We look to what Corda did, in [21] for guidance as to picking 
values of m relevant to early universe conditions. 

Finally, as far as Eq. (39) is concerned, there is one serious linkage issue to classical and 
quantum mechanics, which should be the bridge between classical and quantum regimes, as 
far as space time applicability. Namely, from Wald (19), if we look at first of all arbitrary 
operators, A and B 

( ) ( ) [ ]2 2 1
,

2
A B A B

i
 ∆ ⋅ ∆ ≥  
 

         (40) 

As we can anticipate, the Pre Planckian regime may be the place to use classical mechanics, 
and then to bridge that to the Planckian regime, which would be quantum mechanical. Taking 
[19] again, this would lead to a simplistic structure via the following modification of the 
Hamilton equations of motion, namely we will from (19) get the following re write,  

1,......, 1,......,

1,......, 1,......,

1

,

( ; )

( ; )

1,

0,

n n

n n

n

dq dpH H

dt p dt q

H H q q p p

y q q p p

if n

otherwise

dy H

dt y

µ µ

µ µ

µν

µν

µ
µν

ν
ν

ν µ

=

∂ ∂= = −
∂ ∂

=
=

Ω = = +
Ω =

∂= Ω
∂∑

        (41) 

Then there exists a re formulation of the Poisson brackets, as seen by 

{ },f g f gµν
µ ν= Ω ∇ ∇          (42) 

So, then the following, for classical observables, f, and g, we could write, by [19] 

{ }( )
^

ˆ^ :

ˆ

1

ˆ ˆ, ,

classical observable

quantum observable

f g i f g

Θ → Θ
Θ = −

Θ = −
=

  = ⋅ 

h

            (43) 

Then, we could write, say Eq. (40) and Eq. (43) as 
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{ }( )

( ) ( ) ( ) { }( )( )

^

^2 2

ˆ ˆ, ,

ˆ

1 1ˆ ˆˆ ˆ, ,
2 2

f g i f g

f classical observable

f quantum observable

f g f g f g
i

  = ⋅ 

= −

= −

   
  ∆ ⋅ ∆ ≥ =       

           (44) 

If so, then we can set, in the interconnection between the Planck regime, and just before the 
Planck regime, say, by setting classical variables, as given by 

[ ]
8

tt

tt

R g
f

g g
π

δ

ℵ− + Λ ⋅
= −

=
                      

(45) 

Then by utilization of Eq. (44) we may be able to effect more precision in our early universe 
derivation, especially making use of derivational work, in addition as to what is given here, as 
to understand how to construct a very early universe partition function Z based upon the inter 
relationship between Eq. (44) and Eq. (45) so as to write up an entropy based upon, as given 
in [19] 

( ) lnS entropy Z Eβ= +           

(46) 

If this program were affected, with a first principle construction of a partition function , we 
may be able to answer if Entropy were zero in the Planck regime, or something else, which 
would give us more motivation to examine the sort of partition functions as stated in [22, 
23].See appendix A as to possible scenarios. Here keep in mind that in the Planck regime we 
have nonstandard physics. Appendix A indicates that due to the variation we have worked out 
in the Planckian regime of space-time that the initial entropy is not zero.  

 

Appendix A, scenarios as to the value of entropy in the beginning of space-time 
nucleation  

We will be looking at inputs from page 290 of [23] so that if ~ ~ tt time PE M T t A lδ∆ ⋅ ⋅ ∆ ⋅  

( )~
( ) ln tt P

B temperature

E T t A l
S entropy Z

k T

δ∆ ⋅ ⋅∆ ⋅
= +       

 (1A) 

And using Ng’s infinite quantum statistics, we have to first approximation [24, 25] 
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( )( )

[ ]#

~
( ) ~ ln

~ ln

( ) ~ 0
temperature

tt P

B temperature

B temperature tt

countT anything

E T t A l
S entropy Z

k T

Z
k T g

S entropy n

δ

δ

→

∆ ⋅ ⋅ ∆ ⋅
+

 
+   
 

→ ≠

h
      

 (2A)  

This is due to a very small but non vanishing ttgδ with the partition functions covered by [23], 

and due to [24,25] with countn a non-zero number of initial ‘particle’ or information states, 

about the Planck regime of space-time, so that the initial entropy is non-zero. 
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